28 research outputs found

    On the Design and Improvement of Lattice-based Cryptosystems

    Get PDF
    Digital signatures and encryption schemes constitute arguably an integral part of cryptographic schemes with the goal to meet the security needs of present and future private and business applications. However, almost all public key cryptosystems applied in practice are put at risk due to its vulnerability to quantum attacks as a result of Shor's quantum algorithm. The magnitude of economic and social impact is tremendous inherently asking for alternatives replacing classical schemes in case large-scale quantum computers are built. Lattice-based cryptography emerged as a powerful candidate attracting lots of attention not only due to its conjectured resistance against quantum attacks, but also because of its unique security guarantee to provide worst-case hardness of average-case instances. Hence, the requirement of imposing further assumptions on the hardness of randomly chosen instances disappears, resulting in more efficient instantiations of cryptographic schemes. The best known lattice attack algorithms run in exponential time. In this thesis we contribute to a smooth transition into a world with practically efficient lattice-based cryptographic schemes. This is indeed accomplished by designing new algorithms and cryptographic schemes as well as improving existing ones. Our contributions are threefold. First, we construct new encryption schemes that fully exploit the error term in LWE instances. To this end, we introduce a novel computational problem that we call Augmented LWE (A-LWE), differing from the original LWE problem only in the way the error term is produced. In fact, we embed arbitrary data into the error term without changing the target distributions. Following this, we prove that A-LWE instances are indistinguishable from LWE samples. This allows to build powerful encryption schemes on top of the A-LWE problem that are simple in its representations and efficient in practice while encrypting huge amounts of data realizing message expansion factors close to 1. This improves, to our knowledge, upon all existing encryption schemes. Due to the versatility of the error term, we further add various security features such as CCA and RCCA security or even plug lattice-based signatures into parts of the error term, thus providing an additional mechanism to authenticate encrypted data. Based on the methodology to embed arbitrary data into the error term while keeping the target distributions, we realize a novel CDT-like discrete Gaussian sampler that beats the best known samplers such as Knuth-Yao or the standard CDT sampler in terms of running time. At run time the table size amounting to 44 elements is constant for every discrete Gaussian parameter and the total space requirements are exactly as large as for the standard CDT sampler. Further results include a very efficient inversion algorithm for ring elements in special classes of cyclotomic rings. In fact, by use of the NTT it is possible to efficiently check for invertibility and deduce a representation of the corresponding unit group. Moreover, we generalize the LWE inversion algorithm for the trapdoor candidate of Micciancio and Peikert from power of two moduli to arbitrary composed integers using a different approach. In the second part of this thesis, we present an efficient trapdoor construction for ideal lattices and an associated description of the GPV signature scheme. Furthermore, we improve the signing step using a different representation of the involved perturbation matrix leading to enhanced memory usage and running times. Subsequently, we introduce an advanced compression algorithm for GPV signatures, which previously suffered from huge signature sizes as a result of the construction or due to the requirement of the security proof. We circumvent this problem by introducing the notion of public and secret randomness for signatures. In particular, we generate the public portion of a signature from a short uniform random seed without violating the previous conditions. This concept is subsequently transferred to the multi-signer setting which increases the efficiency of the compression scheme in presence of multiple signers. Finally in this part, we propose the first lattice-based sequential aggregate signature scheme that enables a group of signers to sequentially generate an aggregate signature of reduced storage size such that the verifier is still able to check that each signer indeed signed a message. This approach is realized based on lattice-based trapdoor functions and has many application areas such as wireless sensor networks. In the final part of this thesis, we extend the theoretical foundations of lattices and propose new representations of lattice problems by use of Cauchy integrals. Considering lattice points as simple poles of some complex functions allows to operate on lattice points via Cauchy integrals and its generalizations. For instance, we can deduce for the one-dimensional and two-dimensional case simple expressions for the number of lattice points inside a domain using trigonometric or elliptic functions

    LCPR: High Performance Compression Algorithm for Lattice-Based Signatures

    Get PDF
    Many lattice-based signature schemes have been proposed in recent years. However, all of them suffer from huge signature sizes as compared to their classical counterparts. We present a novel and generic construction of a lossless compression algorithm for Schnorr-like signatures utilizing publicly accessible randomness. Conceptually, exploiting public randomness in order to reduce the signature size has never been considered in cryptographic applications. We illustrate the applicability of our compression algorithm using the example of a current state-of-the-art signature scheme due to Gentry et al. (GPV scheme) instantiated with the efficient trapdoor construction from Micciancio and Peikert. This scheme benefits from increasing the main security parameter nn, which is positively correlated with the compression rate measuring the amount of storage savings. For instance, GPV signatures admit improvement factors of approximately lgn\lg n implying compression rates of about 6565\% at a security level of about 100 bits without suffering loss of information or decrease in security, meaning that the original signature can always be recovered from its compressed state. As a further result, we propose a multi-signer compression strategy in case more than one signer agree to share the same source of public randomness. Such a strategy of bundling compressed signatures together to an aggregate has many advantages over the single signer approach

    Augmented Learning with Errors: The Untapped Potential of the Error Term

    Get PDF
    The Learning with Errors (LWE) problem has gained a lot of attention in recent years leading to a series of new cryptographic applications. Specifically, it states that it is hard to distinguish random linear equations disguised by some small error from truly random ones. Interestingly, cryptographic primitives based on LWE often do not exploit the full potential of the error term beside of its importance for security. To this end, we introduce a novel LWE-close assumption, namely Augmented Learning with Errors (A-LWE), which allows to hide auxiliary data injected into the error term by a technique that we call message embedding. In particular, it enables existing cryptosystems to strongly increase the message throughput per ciphertext. We show that A-LWE is for certain instantiations at least as hard as the LWE problem. This inherently leads to new cryptographic constructions providing high data load encryption and customized security properties as required, for instance, in economic environments such as stock markets resp. for financial transactions. The security of those constructions basically stems from the hardness to solve the A-LWE problem. As an application we introduce (among others) the first lattice-based replayable chosen-ciphertext secure encryption scheme from A-LWE

    A Framework to Select Parameters for Lattice-Based Cryptography

    Get PDF
    Selecting parameters in lattice-based cryptography is a challenging task, which is essentially accomplished using one of two approaches. The first (very common) approach is to derive parameters assuming that the desired security level is equivalent to the bit hardness of the underlying lattice problem, ignoring the gap implied by available security reductions. The second (barely used) approach takes the gap and thus the security reduction into account. In this work, we investigate how efficient lattice-based schemes are if they respect existing security reductions. Thus, we present a framework to systematically select parameters for any lattice-based scheme using either approaches. We apply our methodology to the schemes by Lindner and Peikert (LP), by El Bansarkhani (LARA), and by Ducas et al. (BLISS). We analyze their security reductions and derive a gap of 2, 3, and 63 bits, respectively. We show how parameters impact the schemes\u27 efficiency when involving these gaps

    Lattice-based Direct Anonymous Attestation (LDAA)

    Get PDF
    The Cloud-Edges (CE) framework, wherein small groups of Internet of Things(IoT) devices are serviced by local edge devices, enables a more scalable solution to IoT networks. The trustworthiness of the network may be ensured with Trusted Platform Modules (TPMs). This small hardware chip is capable of measuring and reporting a representation of the state of an IoT device. When connecting to a network, the IoT platform might have its state signed by the TPM in an anonymous way to prove both its genuineness and secure state through the Direct Anonymous Attestation (DAA) protocol. Currently standardised DAA schemes have their security supported on the factoring and discrete logarithm problems. Should a quantum-computer become available in the next few decades, these schemes will be broken. There is therefore a need to start developing a post-quantum DAA protocol. This paper presents a Lattice-based DAA (LDAA) scheme to meet this requirement. The security of this scheme is proved in the Universally Composable (UC) security model under the hardness assumptions of the Ring Inhomogeneous Short Integer Solution (Ring-ISIS) and Ring Learning With Errors (Ring-LWE) problems. Compared to the only other post-quantum DAA scheme available in related art, the storage requirements of the TPM are reduced twofold and the signature sizes 5 times. Moreover, experimental results show that the signing and verification operations are accelerated 1.1 and 2.0 times, respectively

    Solving Lattice Problems with Voronoi Cells

    No full text

    High Performance Lattice-based CCA-secure Encryption

    No full text
    Lattice-based encryption schemes still suffer from a low message throughput per ciphertext. This is mainly due to the fact that the underlying schemes do not tap the full potentials of LWE. Many constructions still follow the one-time-pad approach considering LWE instances as random vectors added to a message, most often encoded bit vectors. Recently, at Financial Crypto 2015 El Bansarkhani et al. proposed a novel encryption scheme based on the A-LWE assumption (Augmented LWE), where data is embedded into the error term without changing its target distributions. By this novelty it is possible to encrypt much more data as compared to the traditional one-time-pad approach and it is even possible to combine both concepts. In this paper we revisit this approach and propose amongst others several algebraic techniques in order to significantly improve the message throughput per ciphertext. Furthermore, we give a thorough security analysis as well as an efficient implementation of the CCA1-secure encryption scheme instantiated with the most efficient trapdoor construction. In particular, we attest that it even outperforms the CPA-secure encryption scheme from Lindner and Peikert presented at CT-RSA 2011

    Towards Lattice Based Sequential Aggregate Signatures

    No full text
    corecore